NetState: A Network Version Tracking System*

Nancy Durgin Yuqing Mai Jamie Van Randwyk

Sandia National Laboratories
Livermore, CA 94550

nadurgi@sandia.gov yugingm@hotmail.com jvanran@sagalia

Abstract vices. Firewall and corporate policies are only able to
. . control the spread of network services to a limited de-

Network administrators and security analysts often do,,aa

not know Wr;atth ne twotrk sErch?sthare dbelr:l g run In €v-- gecause IT departments cannot always control which

ery corner of neir Networks. €y do have a vague, . qrk services are being run on their networks, they

grasp of the services running on their networks, they Of'must find a way to identify which services are being run

ten do not know what specific versions of those service%n which devices. In the past, port scanning (using a tool
are running. Actively scanning for services and versions uch as Fyodor'&imap [1]) V\;as a reasonably airtight

does_ not always yield complete results, and patch anaechnique used to identify services running on a given
service management, therefore, suffer. We present Ne

o i i Hetwork—enabled device. Now users install common net-
State, a system for monitoring, storing, and reporting ap-

o : L . work services on non-standard ports to get around cor-
plication and operating system version information for a

. . . “porate firewall restrictions. Some users install multiple
network. NetState gives security and network adminis-

trators the ability to k hat i _ their net operating systems on a single computer, rendering port
rators the apiity to know what 1S running on their net- g, ¢ incomplete. Trojan-horses use proprietary network

works while aIIOW|_ng fo'f user-manage_d machines ar!dprotocols on seemingly random ports to conduct their ne-
complex host configurations. Our architecture uses d'sfarious activity

tributed modules to collect network information and a . . . ,
. . Not knowing what services are running on one’s net-
centralized server that stores and issues reports on that)
L . ; work makes patch management and service management
collected version information. We discuss some of the e : :
- ; extremely difficult. This can open network devices up
challenges to building and operating NetState as well a .) :
. . . compromise because the IT staff cannot identify and
the legal issues surrounding the promiscuous capture o

network data. We conclude that this tool can solve som(.patch allinstances of the affected service after anew vul-

key problems in network management and has a widé‘eraIbIIIty announcement,

range of possibilities for future uses. We bui_lt N_etState to pass_ively monitor, st_ore,_ and re-
port application and operating system version informa-
tion for a network. NetState includes sniffer modules
1 Introduction that monitor traffic across a network, a backend database
for storing service name and version information, and a
As computer networks grow larger, it becomes more dif-GUI client for querying the database. NetState was built
ficult to manage those networks. It is increasingly diffi- for internal use but is now being made available in the
cult for information technology (IT) departments to man- public domain.
age large numbers of computers and similar devices on We have organized the rest of this paper as follows:
their networks. As users become more savvy, it is mordn Section 2 we survey existing open source and com-
difficult to control the network services that users run onmercial tools that attempt to catalog service versions in
their computing devices. In addition, viruses, Trojan-existence on a network. Then, in Section 3 we discuss
horses and worms may install “back-door” network ser-both our design requirements and our implementation.
—— " aborat ed by Sandia@ Our discussion of the implementation describes the three
ion. ;'I‘_o'?k'sei(’j“&;%‘ggé%”%pin‘;tafgzhoepzrr?it‘; d S);at:: E;;ma?;p main components of NetState: the NetState Sniffer, the
of Energy's National Nuclear Security Administration un@ontract ~ NetState Server, and the data query interfaces. In Sec-
DE-AC04-94AL.85000. tions 4, 5, and 6 we describe the performance of NetState

in a low-bandwidth network and relate our experiencessystem has been booted into a different operating system
and perceived challenges in using NetState on a day-ter when a machine that is often powered off has been
day basis. Next, in Section 7, we give an overview ofpowered on. In these situations, Nmap could fail to iden-
legal issues surrounding the “sniffing” of data in both tify open and potentially vulnerable network services.

the employer-employee and Internet service provider- We have decided to release the NetState source code to
customer scenarios. We conclude by discussing futuréhe open source community for several reasons. Primar-

work in Section 8. ily, we believe that secure public networks are of benefit
to everybody. A tool that allows network administrators
2 Reated Work to be more aware of the behavior of the machines on their

networks is one more step towards this goal. In addi-

When we surveyed the commercial and open sourcdion, while we have implemented version detection for

communities for software to perform our desired func-many common protocols, we feel the open source com-

tions we did not find anything that fit our requirements. Munity can contribute support for additional protocols or
Several companies sell products that monitor andMProve upon the current detection methods.

record network traffic for further analysis [2, 3]. Presum-

ably, these products offer the ability to report network .

service versions, but we did not test for this. Company3 Architecture

literature was also not clear in identifying the existenceO desi ¢ d after di . Is with
of this feature. We did not fully evaluate these products ur design was formed a ter IScussing goais wit our
ecurity analysts, studying our existing security arahite

because their overall utility was far more than we needed’ ; ,
Novell sells the desktop management prodzEN- tre and e_"a'“i‘“”g a prototype tool th_at we hgd writ-
works that allows centralized management of many in-ten- We first d_|scuss some of our de_S|gn r_equwements
dependent systems vianaanagement agent running on qnd then describe how we met those in our implementa-

those machines [4]. From a central location a network!®":

or security administrator can enforce a standard desktop

environment, migrz_ﬂe personal settings, deploy softwar?_l Design Requirements

patches, and monitor system performance. The centra

management server provides a network analyst with in- e Fits into our existing network security frame-
depth information about each of the managed hosts. This work: The server computer should exist on a
includes information about network service versions. We private security network. Only security personnel,
would not be able to rely on such software to accu- other authorized personnel, and machines owned by
rately represent our entire network though. Our labora- security should be able to access this machine via
tory research environment demands that some systems the network. The network traffic being monitored
be managed solely by the researcher that owns them, should be on a separate network.

often meaning that remote management utilities cannot

be installed by our desktop support team. More impor- e Comprehensive data collection: Traffic should
tantly, ZENworks only supports the NetWare, Windows, be monitored at every network ingress and egress
and Linux operating systems. Our networks are hometo point. This includes wide-area Internet links, VPN
systems running many operating systems beyond those concentrators, modem pools, wireless access points,
supported by ZENworks, also including Linux distribu- point-to-point links with collaborators, etc.

tions not officially supported. Finally, the capabilities

of ZENworks are far beyond what we wanted to imple- e Pertinent information only: All information

ment; the Novell software would duplicate functionality about network application versions should be col-
already established by competing products on our net- lected for all computers, but we should not store
works. any more than that. We should be able to determine

Nmap recently introduced a network service version which application version is/was running on which
scanning feature. Using the ‘-sV’ or ‘-A’ options, an an- port on each device at any pointin time.

alyst can identify the application name and version in-

formation when available. Nmap performs this inquiry e Major network applications: We should track in-
for each open port that it discovers during the port scan- formation for “major” applications on our network.
ning procedure. The community involvement with keep- This includes services and client applications that
ing the service version database up-to-date is especially are commonly used or are mission-critical. We im-
valuable to Nmap. Nmap is designed to be an active plement this in such a way as to allow expansion to
scanning tool though. It cannot detect when a multi-boot ~ additional applications in the future.

e Passive monitoring: All version information Nelstate Architecture
should be collected passively by monitoring all the

traffic on the target network.

LN

3.2 Passivevs. Active Scanning

A major distinction of NetState’s design is that it uses
passive scanning techniques as opposed to the acti
techniques employed by tools suchNrsap andNessus

[5]. While active scanning techniques can often yield
more detailed or precise data, for example by sending
specially crafted packets that yield a definitive signature
passive scanning offers several advantages:

 Database

PostgreSQL
MySQL

Others...

° Actlve scanning tools are “n0|sy”,_ creating addi- Figure 1:The NetState architecture includes distribugad-
tional, and often unnecessary, traffic on a network. erg that capture Ethernet frames and parse them for version
information. The Sniffers send this information on to tha-Ne
e If a particular machine is turned off, a single ma- StateServer which inserts the data into a database. The Net-
chine boots multiple operating systems, or multiple State Web GUI (graphical user interface) and the database CL
machines share the same IP addresses at differefgommand-line interface) can be used to query the database a
times (via DHCP), it is difficult to guarantee detect- "€trieve version information.
ing these situations via active scans. Since passive
scanning monitors network traffic @l times, it
yields information about what actually happens on3 4 NetState Sniffers
the network, rather than just a snapshot of what the
network looked like when the scan was performed. The NetState Sniffers are designed to be deployed in
many locations on a network. The Sniffers capture net-

These active scanning tools can still be used to asork traffic using libpcap [6], the packet capture library
sist NetState in gathering application version informa-available for most UNIX and UNIX-like operating sys-
tion. We can populate the NetState database by performf€Ms- The Sniffers listen passively on a network interface

ing an active scan that receives its results under the nod8at is given access to all traffic on the to-be-monitored
of a NetState Sniffer. network link, whether by a switch’s port-mirroring func-

tion, a network tap or some other method.
Operating system detection is performed using the
3.3 Implementation open source prograp0f (version 2) [7] [Figure 2]. (The
data used for our Web GUI figures were PCAP files col-
Our design goals led us to implement a distributed sysiected by MIT Lincoln Labs as part of the DARPA In-
tem consisting of several modular programs all workingtrusion Detection Evaluation project [8]. We replayed
together as NetState. The architecture is shown in Figthe traffic on a private network using Tcpreplay [9].) We
ure 1. modified pOf to tightly integrate it into NetState, calling
The core of our system is a server process that accepttdirectly as a subroutine. OS detection is performed at
network traffic information from distributed Sniffer pro- the beginning of each new connection, on the synchro-
cesses and places the information into a database. Th#ze (SYN) packet.
NetState Server receives connections from NetState Snif- Application version detection is performed by looking
fers via a private “security” network. The Server receivesat the first few data packets of a connection [Figures 3,
application version information over those connections4]. The first data packet is examined for “magic strings”
and stores the information in a database. These connewthich indicate it likely contains traffic of a specific type.
tions could be established over the open network as well-or example the magic string for the FTP and NNTP pro-
but NetState needs built-in authentication before that igocols is the number “202" at the beginning of a line,
practical. The Server also responds to queries from auwhile the magic string for an HTTP server is “HTTP” at
thorized clients that are allowed to access the applicatiothe beginning of a line. If a magic string is found, then
version database. Access control is maintained using odurther processing is done to find a version string in that
erating system-level firewall rules. packet or from one of the next few packets, depending

!!|ec1 ! ltering options anl ! I!I !nlm:l ||uery to view rsuI's. ! !|!nl options are |gno!.
IP Address: is x| [172%
Use % as a wildcard. %2% selects every IP containing the number 2. l‘%gfd?ﬁ' Protosel Porf SGriDats Fecemi Date Version
n
W‘quws Q 199.95.74.91 HTTP-S 80 2005-02-0502:51:55 2005-02-05 07:24:07 fg;;einmﬁ oL
Operating System: |is | |Linux 192.168.10250 SSH-C 0 2005-02-04 21:08:03 2005-02-04 21:55:59 SSH-2.0-OpenSSH_3.6.1p2
Hold control key down 1o select multiple operating systems. User-Agent: Mozilla/2.0
Start Date: From ﬁ o [oo 172.16.115.5 HTTP-C 0 2005-02-0502:50:56 2005-02-0507:24:28 (compatible; MSIE/3.01;
Windows 95)
Recent Date: to YYYY-MM-DD User-Agent: Mozilla/5.0 (X11;
T 09 2015 Us Linux i686; rv:1.7.3)
. 192.168.10250 HTTP-C 0 2005-02-0421:09:39 2005-02-0422:20:15 5} LIOWX 1O8C
Sort By: IP Addr‘ess 0 Fiet0.10.1
Operating System |y i 132.175.81.4 HTTP-S 80 2005-02-0421:09:39 2005-02-04 21:09:40 Server: Apache/1.3.28 (Unix)
Hold conirol key down 1 select multiple colums. 164.40.102 44 HTTP-S 80 2005-02-04 21:09:43 2005-02-04 21:09:44 Server: Apache/2.0
Submit Query | Reset 64.40.102.49 HTTP-S 80 2005-02-04 21:09:44 2005-02-04 21:09:44 Server: TUX/2.0 (Linux)
User-Agent:
P Addr OS Guess S Dak Recent Date 192.168.10250 HTTP-C 0 2005-02-04 21:11:15 2005-02-04 21:11:15 ngfgegfm stable (Red Hat
172.16.113.204 Linux 2.0.3x (1) 2005-02-04 22:23:02 2005-02-05 11:49:16 - -
172.16.112.50 Solaris 2.5-7 2005-02-04 22:23:02 2005-02-05 12:15:11 4 e
172.16.113.84 Linux 2.0.3x (1) 2005-02-04 22:23:02 2005-02-05 10:52:08 140.211.166.201 HTTP-S 80 20050204 21:11:47 20050204 21:11:47 g ™" £ -
172.16.113.105 Linux 2.0.3x (1) 2005-02-04 22:23:02 2005-02-05 17:43:17 . - - ;
172.16.114.168 Linux 2.03x (1) 2005-02-04 22:23:03 2005-02-05 14:06:40 125824042 HITPS 80 2005-02.0421:1148 2005-02-0421:1148 Server ﬁgﬁzz_o_sz
172.16.114.169 Linux 2.0.3x (1) 2005-02-04 22:23:03 2005-02-05 10:34:44 (Gentoo/Linux)
72.16.112.100 Windows NT 4.0 (older) 2005-02-04 22:23:03 2005-02-05 09:58:06 (192.168.10252 HTTP-S 80 2005-02-0421:11:58 2005-02-0421:12:22 04" 053
72.16.112.194 Linux 2.0.3x (1) 2005-02-04 22:23:03 2005-02-05 09:42:42 OpenSSL/0.9.7d PHP/4.3.9
16114207 Linux 2.03x (1) 2005-02-04 22:23:03 2005-02-05 10:17:01 Server: Apache/1.3.23 (Unix)
49 Linux 2.03x (1) 2005-02-04 22:23:04 2005-02-05 10:27:07 (Red-Hat/Linux)
.16.114.168 Sony Playstation 2 (SOCOM?) 2005-02-04 22:23:04 2005-02-05 07:16:38 mod_python/2.7.6
114148 Linux 2.0.3x (1) 2005-02-04 22:23:04 2005-02-05 10:14:24 [192.168.10212 HTTP-S 80 2005-02-0421:12:37 2005-02-04 21:13:35 Python/1.5.2 mod_ss/2.8.7
207 Linux 2.03x (1) 2005-02-04 22:23:05 2005-02-05 11:26:44 OpenSSL/0.9.6b DAV/1.0.3
50 SunOS 4.1.x 2005-02-04 22:23:05 2005-02-04 22:30:54 PHEM 1 2mnc|/cd _perl/1.26
Mo
92.168.10.128 SSH-S 22 2005-02-04 21:13:44 2005-02-04 21:13:44 SSH-1.994 OpcnSSH 3.5p1
192.168.10212 SSH-S 22 2005-02-04 21:14:13 2005-02-04 21:55:59 SSH-1.99-OpenSSH_3.1p1
H . : 192.168.10250 SSH-S 22 20050204 21:16:15 20050204 21:16:15 SSH-1.99-OpenSSH_3.6.1p2
Figure 2: These query results, using the NetState Web GUI,| is21ss10212 SSHC 0 20050204 211615 20050204 21:16:15 SSH20-OpenSSH_3.1p1

show a partial listing of the operating system versionsatete
on the 172.*** network. The dates indicate when the oper-Figure 3:These query results show the detected network ser-
ating system was first detected and when it was most recentlyices and their corresponding versions and port numberiseon t
detected. local network. The “start date” and “recent date” columns in
dicate when the particular service was first detected and mos
recently detected, respectively. NetState does not track p
. numbers for client version strings, so the ports for the HTTP
on the specific protocol. and SSH clients are filled with a placeholder “0”.
In most cases the version string that is stored in the
database for applications is simply the entire string in
which the version appears. No attempt is made to pull
a numeric value out of a string, because in most cases
the format of the version string is not well-defined, but
instead, tends to follow common conventions.
In a few cases, e.g. for the file transfer protocol (FTP)
and the simple mail transport protocol (SMTP), Some im-| New Applications w»

plementations append a time/date stamp to the version Ao venion IR s
Since the timestamp would cause each version string fgy o« e 1987248153 19 day nd hour sg0
sessions occurring at different times with the same servel *Efﬁﬁﬁifiiﬁ Eigé ésﬁhiﬁ":
to be logged as a new version, this information is stripped Iooarrsise ;gg;%;:g ;g:g;fé;g
off. These sorts of issues need to be discovered and hap STLRATIED 19 day and 10 howrs sgo
dledona Case'by-Case basis. 220 calvin FTP server (Version wu-2.4.2-academ[BETA-15](1) Sat Nov 1
03:08:32 EST 1997) ready. 197.218.177.69 19 days and 10 hours ago
Currently NetState does not use the port number to inf ., oo somass ss P611618 19 dayeand S hoursago
fer that a particular application is running. It Will find | 20 cgieeyricatmi Esvre senamai 557557 116112149 19 days and houns ago

hypertext transfer protocol (HTTP) traffic on any port, | 220nosbes Fre server (version wi-24 2 sesdemiETa-1510) SatNov
) 103:08:32 EST 1997) ready. 172.16.114.148 19 days and 10 hours ago
FTP on any port, etc. By not using the port number as

220 hume Microsoft FTP Service (Version 2.0). 72.16.112.100 19 days and 10 hours ago
a “hint”, we are more restricted in what applications We | 2 mux eswre senaman s5.55.5.5: TRHETIESS 19iyssd 10 Honmag
can currently detect, but since we want to be able to der 220 pieconsysicatamit Esmre seadmit 378 870 17216114207 19 days and 9 hours ago
tect rogue applications on unusual ports, this seemed like
the correct design decision. Figure 4:These query results show the IP addresses detected

The NetState Sniffer keeps a cache of recently seeff be running a given network service and version number
version numbers by IP address and port. If a Vers'or{llsted by services). Also included is how long ago that ser-
string is detected that was seen recently, the tlmestamﬁCe wa? last detectedtNetSt?rt]e doeds n?t c:;rrently rengsxe h
is updated internally in the Sniffer but not updated to themanl?zspp?:: t\c/)et:ZIZ?ﬁ:rrelg?iérsizi’sltfrI:J;gt;tee rsions oldsen
Server component right away. A timeout can be con- '
figured to control how often the cache updates. This
caching feature was added to improve database perfor-

mance on busy networks by reducing the number of

database updates performed by the server component.e What ports are open on IP x?
The result of the caching is that the most-recently-seen
time value in the SQL database may not be completely
up-to-date at any given time.

The NetState Sniffer maintains information on all ac- 4 \what IPs on network x are running protocol/version
tive connections, as well as the version cache informa- y less than version z (e.@penSSH versions< pro-
tion, in memory. Its memory fingerprint can be quite tocol 2)?
large, approaching 512 MB on a busy network (e.g.
1000+ hosts). It loads some configuration files (e.g. the In addition to the Web interface, scripts can be written
pOf fingerprints) from disk but does not maintain any in any language with SQL library support (e lgerl), to

e What are all the versions of protocol x (e.g. SSHD)
running on network y?

state on disk. generate reports about the hosts on the network in any
desired format.
35 NetState Server Some examples of typical SQL queries are shown in

Tables 1 and 2. These are the types of queries that can

The NetState Sniffers capture data off of the networkpe integrated into a graphical GUI or a Perl script, as
including the application version string, IP address andjesired. The query in Table 1 lists the OS strings from
port number. This three-tuple of information is then sentg|| the machines in the database. The record name is
to the NetState Server. The Server collects this informaps _det ect , and the string for thes_ver si on field
tion and writes it to a database along with the current dateomes from the pOf fingerprint file.
and time. If the three-tuple creates a new application- Another example of a useful query is shown in Table 2,
version entry, the timestamp is also stored both in a “firstwhich shows the software version for all the machines
seen” field and a “most-recently-seen” field. If the three-gn the network that are running an HTTP server. Note
tuple already exists in the database, the Server updatefat in this example, there are several duplicate entries
the “most-recently-seen” field with the current times- for a particular IP address. This can happen when a web-
tamp. The database thus stores five-tuple entries contaifyroxy is being used. In this quesyer si on is the name
ing the application version string, IP address, port num-of the database record. Thier si on field is the string
ber, first-seen timestamp and last-seen timestamp. that was detected by NetState. THescri ption

The NetState Server is implemented as a daemon lisfield is a mnemonic human-readable field that is deter-
tening on a socket on a specific TCP port (the default isnined by NetState. Note that “HTTP-S” refers to “HTTP
2003) for messages from a Sniffer. If it detects a newServer”; we use HTTP-C to refer to the version for the

connection on the port, it spawns a copy of itself to han-lient side. It doesot mean “secure HTTP” (the TTPS
dle that connection. The Server is implemented as a simprotocol).

ple loop that translates messages received from the Snif- Another interesting query is
fer into appropriate SQL database commands to update
the database. It does not have any significant memory ofe| ect i p_addr _dot, port, description,
disk structures to maintain (other than the SQL databas@er si on from versi on where description =
itself). "HTTP-S' where port != 80;
The database may be located on the same system as the
NetState Server, or it may be located on a separate backhis query will list all the HTTP servers on the network
end database server. NetState currently supports both thigat are not running on the standard port 80.
MySQL and PostgreSQL open-source databases. Each
of the NetState components was designed to be run 02 Perfor mance
Linux and BSD-derived operating systems. Tested oper-
ating systems includBedHat Linux 9.0, Fedora Core 2

andFreeBsD 4.8, The first version of NetState did not do any internal

caching of version information in the Sniffer component.

] The information for each version string was handed di-

3.6 Reporting Interfaces rectly to the NetState Server, where duplicate version
eﬁlrings were handled by updating the “most recent time
seen” field in the database record. Performance testing
indicated that on a busy network the SQL queries would
bottleneck the system. A version cache was added to
the Sniffer component to mitigate this bottleneck. The
e What versions of software (for supported protocols)cache works by watching for a version string associated
are currently running on IP x? with an IP address that is identical to one that was seen

A Web interface can be used to query the NetState Serv
for information regarding the service applications on a
network. The client includes functionality for several
“canned” queries that answer questions including:

nmysql > sel ect i p_addr_dot, recent_date, os_version from os_detect;
| i p_addr_dot | recent_date | os_version |

2003-11-26 15:18:44
2003-11-20 17:20: 33

| | | Linux 2.4.2 - 2.4.20 |
| | | Linux 2.4.2 - 2.4.20

| | 2003-11-25 14:12:36 | Wndows XP Pro, W ndows 2000 Pro |
| . . | 2003-11-25 09:33:49 | Wndows 98 or W ndows 2000 SP4 |
| 192.168.10.31 | 2003-11-21 15:33:42 | FreeBSD 5. 0- RELEASE or Maci ntosh PPC Mac OS X (10.2. ...
| 192.168.10.31 | 2003-11-21 15:33:45 | Macintosh PPC Mac OS X (10.2.1 and v?)

I I I I
| | | |
| | | |

192.168. 10.5 2003-11-21 16:55:51 W ndows 2000
192.168.10. 4 2003-11-25 16:55: 16 W ndows 98 or W ndows 2000 SP4
192. 168. 10. 218 2003-11-26 12:00:40 | W ndows 2000
(...)
| 192.168.10.51 | 2003-11-26 11:24:59 | Wndows 98 or Wndows 2000 SP4
| 192.168.10.84 | 2003-11-25 16:04:28 | Wndows XP Pro, Wndows 2000 Pro
| 192.168.10.133 | 2003-11-26 13:25:31 | Wndows 2000
o e e e e e e oo Fom e e e e e oo e m m eeeeeaea +

17 rows in set (0.00 sec)

Table 1:This query and the corresponding results list all detediedddresses and their corresponding operating systems. Her
we also requested the date and time at which the operatitgnsysas last seen.

mysql > sel ect i p_addr_dot, port, description, version fromversion where description = 'HITP-S
Fomm e ommm - T T L LT TSP +
| ip_addr_dot | port | description | version |
Fomm e ommm - T T L LT TSP +

192.168. 10. 11 80 HTTP- S Server: GAN6/2.1

192.168. 10. 11 80 HTTP-S Server: Smal | WebServer/2.0

192. 168. 10. 10 80 HTTP- S Server: Apache/1.3.28 (Unix)

192. 168. 10. 10 80 HTTP- S Server: Apache/1.3.26 (Unix)

192.168. 10. 10 80 HTTP- S Server: GAN5/2.1

192. 168. 10. 10 80 HTTP-S Server: Smal | WebServer/2.0

			[
. .			[
192.168.10. 10	80	HTTP-S	Server: Mcrosoft-11S/5.0

| | | | |
| | | | [

192. 168. 10. 10 80 HTTP-S Server: Barista/3.2.7.0005
192. 168. 10. 10 80 HTTP- S Server: Val ueAdExpress Server 2.0 UNI X (FreeBSD)
192.168.10. 11 80 HTTP- S Server: Squid/ 2. 3. STABLE2
192. 168. 10. 8 80 HTTP-S Server: Squid/ 2. 3. STABLE2
192. 168. 10. 10 80 HTTP- S Server: Stronghol d/ 2. 4.2 Apache/1.3.6 C2Net EU 2412 (Un ..
192. 168. 10. 8 80 HTTP-S Server: GAS/ 2.1
192.168.10. 8 80 HTTP- S Server: Stronghol d/2.4.2 Apache/1.3.6 C2Net EU 2412 (Un ..
(..)
| 192.168.10.8 | 80 | HTTP-S | Server: Mcrosoft-11S/4.0
| 192.168.10.8 | 80 | HTTP-S | Server: Apache/1.3.27 (Unix) nod_throttle/3.1.2 nod_pe ...|
Fom e e e e m o I — Fom e e e m m eeeeaa— +

58 rows in set (0.00 sec)

Table 2: This query and the corresponding results list all Web sergeen on the local network. Web servers are recorded as
“HTTP-S” to differentiate them from Web clients (“HTTP-C”)

“recently” (where “recently” is configurable but defaults application versions over a very large IP address space
to five minutes). In that case the Sniffer does not im-(i.e. CIDR /16 and larger spaces). This required a large
mediately update the database. The new most-recematabase with capability to hold information on, poten-
time information is cached, and the database is updatetially, thousands of addresses and ports and, sometimes,
later, either by a housekeeping routine or when the Snifmultiple services per port corresponding to a single IP
fer exits. This caching means that the information inaddress because of multiple installed operating systems.
the database will not be as up-to-date as it would be Another difficulty is application version obfuscation.
without caching, but the performance increase is subSome network services issue version strings with varying
stantial. In concrete terms, without this caching, Net-degrees of specificity. Some services do not issue version
State was not able to keep up with the network trafficstrings at all, leaving version identification to a process
on our target network (averaging “7 Mb/s combined in-of identifying protocol differences between versions. We
bound and outbound traffic). With the caching, droppeddo not currently use this technique for application ver-
packets were essentially reduced to zero as reported kgion identification in NetState.
pcap.stats(). NetState cannot account for the situation created when
the Sniffers are located on the outside of a NAT device.

. The NAT device causes many service versions to appear

5 Experiences as if they are associated with one IP address or computer,

) , creating many collisions in the NetState database. Many
After running NetState on our internal network for sev- ¢oice versions for one given port can be recorded in a

eral months, we have already found some useful results,gry short period of time causing an administrator great
Mainly, NetState is useful for finding out what is really ¢,nfsion. The solution to this situation, of course, is

happening on the network and for spotting unusual ac, gesign the monitoring architecture in such a way that
tivity that might not be detected by active scanning. FOry Netstate Shiffer is behind every NAT device. Know-
example, if multiple machines are located behind a NATj 4 \yhere NAT devices are located on one’s network is,
(network address translation) device, they will appear 19, ¢, rse, the most important help for an administrator.
have a single IP address. By monitoring the OS and aprs same issue exists when detecting Web browser ver-
plication versions coming from that IP address, it is €asYiqns for machines behind a Web proxy server. As men-
to detect a NAT device (or a single machine that bootSjgneq in Section 5 above, this aberrant behavior can be
multiple operating systems at different times). This Sorthelpful in detecting NAT devices and Web proxy servers

of information is useful both because it might be in vio- ;. hatworks especially when these devices need to be
lation of network security policies and because we mightregulated by’an administrator in some way.
want to identify all machines running a certain OS for

patching and vulnerability assessment/remediation. Net-
State can also detect information about a machine thaf Le€gal I'ssues

is used infrequently — such a machine might not even be)
turned on when an active scanning program is run, puSome network users may object to software such as Net-

if it is ever booted and communicates on the network State because itis a form of monitoring software and has
NetState can detect it. the potential to invade one’s privacy. We can appreciate
Because NetState does not rely on “known ports” tothat opinion and can assure users that NetState evaluates
identify application versions, it can detect services run-2nd stores data exactly as described previously and does
ning on unusual ports. These might be unsanctionedot store data from further down in the data stream. Due

HTTP servers, or they could be indications of a COmpro_diligence requires us to look at the legality of one’s cor-

mised machine “phoning home” to the attacker. Activeporation_, university, or IS_P (Internet Service Provider)
scanning, obviously, can only detect the ports that hap°nducting such “monitoring” as well.

pen to be open at the time the scan is performed. Attack- COrPorations (such as our laboratory) are legally al-
ers often only open ports for very short windows of time, 0Wed to monitor their own networks for “business pur-

Again, NetState can detect and log this activity wheneveP?S€s” Which could include monitoring for misuse and
it happens to occur. potential vulnerabilities [10, 11, 12]. In addition, we use

banners in local login windows and remote logins to in-

dicate that all network traffic is subject to monitoring.
6 Challenges Logging into the system indicates consent to monitoring,

though consent is not essential for a company to moni-
As in any project, we were presented with some chaltor employee communications. In almost all cases, em-
lenges in the course of our implementation. One chalployees should have no expectation of privacy relating
lenge was designing a system that could handle trackintp their network traffic including email (whether a work

account or a personal account), Web-surfing habits, etcState if he/she does not specifically ask for it. We would
[13]. When using company-owned equipment to accessike to build a small set of signatures that constantly
a data network, all network traffic is fair game for corpo- look for service version anomalies and automatically no-
rate snooping. tify appropriate personnel. For example, we would like

According to US code, ISPs are allowed to monitorto know in a short amount of time if an OpenSSH ser-
their networks for misuse and potential vulnerabilities asvice version changed to an earlier version than was last
well [14]. An ISP is allowed to “intercept, disclose, or known.
use” the network traffic for the purposes of rendering ser- Our current design using passive sniffing could aid in
vice and for protecting its property. It can easily be seerperforming network-based anomaly detection in the fu-
that a system used for tracking service versions and thutire. Since the anomaly detection data would come from
potential vulnerabilities on an ISP’s network, though notcurrent traffic that was scanned passively, it can be di-
on systems owned by the ISP, can be used to ensureractly compared to the data from NetState —i.e. the data
properly functioning network for customers and protect-will contain the same type of information. We think this
ing the ISP’s own assets (servers, bandwidth, etc.). will make the anomaly detection task more tractable.

It appears that universities can also sniff network traf- We have begun to study creating network profiles for
fic under the same US code section as above. Since mosach device on our network using NetState. Because
universities provide a “wire or electronic communica- we have Sniffers placed in many strategic locations, it
tions service,” they can also protect their property usingis easy to record and store information about the typical
a tool such as NetState. network traffic patterns seen from each network device.

Employees, customers, students, researchers, eté/e have experimented with storing information about
may not like that their Internet communications can beeach session that a device establishes that terminates with
watched, but US law appears to allow such actionshosts outside our networks. After enough time building a
Again, our tool does nothing more than watch for anddatabase of session data, we hope to extend the NetState
record network service version information. Neverthe-Server so that it detects anomalies in network traffic be-
less, we remind users to deploy encrypted network applitween hosts.
cations or to tunnel their applications over an encrypted

link for true data confidentiality. 9 Acknowledgements

8 Future Work We would like to thank Tim Toole, Tristan Weir, Archer
Batcheller, Kami Vaniea, and Eric Thomas for their con-

We would like to extend NetState to detect versiontributions and insight into this project. Special thanks

strings for more network services. Eventually we wouldgoes to Randy McClelland-Bane for his hard work gath-

hope to have a list containing regular expression-basedring screenshots and data for our consumption.

signatures for version strings so that we can easily add

more deteptlon capability. This could _be mr_mlar to th_e References

signature file used by the open source intrusion detection

system, Snort. [1] Fyodor. (2005) Nmap. Insecure.org. [Online]. Availabl

As mentioned earlier, the Nmap scanning tool has the http://www.insecure.org/nmap/
capability to actively probe open ports for service and [2] eEye Digital Security. (2005) Iris network traffic anady.

version information. It would be easy to quickly popu- [Online]. Available: http://www.eeye.com/html/prodstt
late the NetState database upon initial installation using jris/index.html

this feature of Nmap. NetState could piggyback on an or-
ganization’s routine scanning activities to aid in dat&bas
population as well.

Because NetState learns about service versions pas[4]
sively, it cannot learn information about specific software
versions being run inside of SSL connections. Nmap in- [5] Renaud Deraison. (2005) Nessus open source vulnerabil-
vokes OpenSSL when it discovers an SSL-enabled ser- ity scanner project. Tenable Network Security. [Online].
vice and then initiates further probes to obtain version ~ Available: http:/iwww.nessus.org/
information. We may add a module to NetState that [6] Lawrence Berkeley National Laboratory Network Re-
invokes Nmap when SSL-enabled ports are discovered, search Group. (2005) libpcap. [Online]. Available:
storing those results in the NetState database. http://ftp.ee.lbl.gov/nrg.html

NetState is a query-based tool. In other words, a net-[7] Michal Zalewski. (2005) pOf v2. [Online]. Available:
work/security analyst will not get information out of Net- http://lcamtuf.coredump.cx/pOf.shtml

[3] Jawin Company. (2005) Network packet analyzer.
[Online]. Available: http://www.javvin.com/packet.htm

Novell Inc. (2005) Zenworks suite. [Online]. Available
http://www.novell.com/products/zenworks/

(8]

Darpa intrusion detection evaluation data. MIT Lincoln
Laboratory. [Online]. Available: http://www.Il.mit.edu
IST/ideval/data/1999/training/week3/

[9] Aaron Turner and Matt Bing. (2005) Tcpreplay. [Online].

[10]

[11]

[12]

[13]

[14]

Available: http://tcpreplay.sourceforge.net/

(2004) Workplace privacy. EPIC. [Online]. Available:
http://www.epic.org/privacy/workplace/

(2002) Fact sheet 7: Workplace privacy. Privacy
Rights Clearinghouse. [Online]. Available: http://www.
privacyrights.org/fs/fs7-work.htm

Karen L. Casser, “Employers, employees, e-mail
and the internet,” inThe Internet and Business:

A Lawyer's Guide to the Emerging Legal Issues.
Computer Law Association, 1996. [Online]. Available:
http://www.cla.org/RuhBook/chp6.htm

(2003) Fact sheet 18: Privacy in cyberspace. Privacy
Rights Clearinghouse. [Online]. Available: http://www.
privacyrights.org/fs/fs18-cyb.htm

United States Federal Government, “Interception and
disclosure of wire, oral, or electronic communi-
cations prohibited,” inUS Code, Title 18, Part

I, Chapter 119, §2511, 2004. [Online]. Avail-
able: http://www.law.cornell.edu/uscode/html/uscdilel
uscsec18.00002511----000-.html

